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Abstract (English)  Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse
form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity
and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger
macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is de-
rived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook
nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively
assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to
calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clus-
tering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of
every individual tooth can be a painstaking task. Here, we present Dental Dynamics, a module for 3D Slicer that allows for the
fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to
describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module
we used Dental Dynamics to quantify 780 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with
the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions.
Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty
method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and
studying teeth.

Abstract (Spanish)  Los dientes revelan cdmo los organismos interactiian con su entorno. Los bidlogos llevan mucho tiempo
observando las diversas formas y funciones de los dientes para estudiar la evolucion de la alimentacion, la lucha y el desarrollo.
El aumento exponencial en la cantidad y accesibilidad de los datos de la tomografia computarizada (CT) ha permitido a los
morfdlogos estudiar los dientes con resoluciones més finas y escalas macroevolutivas mas grandes. Medir la funcién dental no es
una tarea facil; de hecho, gran parte de nuestro conocimiento mecanico se deriva de la forma dental. Los descriptores categdri-
cos de la forma de los dientes, como la homodoncia y la heterodoncia morfoldgicas, pasan por alto los matices funcionales
al reducir la diversidad de los dientes para el analisis comparativo. El método de la homodoncia funcional cuantitativamente
evalua la diversidad funcional de denticiones enteras a partir de la forma del diente. Sin embargo, algunos vertebrados tienen
cientos o miles de dientes y medir la forma y funcioén de cada uno de los dientes individuales puede ser una tarea minuciosa.
Aqui te presentamos Dental Dynamics, un médulo para 3D Slicer que permite la cuantificacion rapida y precisa de denticion y
mandibulas. La herramienta automatiza el calculo de varios rasgos dentales utilizados clasicamente para describir forma y fun-
cion (es decir, relacion de aspecto, ventaja mecanica, fuerza, etc.). Para demostrar la utilidad de nuestros médulos utilizamos
Dental Dynamics para cuantificar 780 dientes en 20 salamandras que exhiben ecologias diversas. Combinamos estos datos
con el método de homodoncia funcional para investigar la hipétesis de que las salamandras arbéreas Aneides tienen nuevas
funciones dentales. Dindmica Dental proporciona una forma nueva y rapida de medir los dientes y aumenta la accesibilidad de
los método funcionales de homodoncia. Esperamos que Dental Dynamics fomente mas conocimientos teéricos y desarrollo
metodoldgico para la cuantificacion y estudio de los dientes.

Abstract (German) Zihne enthiillen, wie Organismen mit ihrer Umwelt interagieren. Biolog: innen untersuchen seit langem
die diverse Form und Funktion von Zahnen, um die Evolution von Nahrungsaufnahme, Kampf und Entwicklung zu entschliis-
seln. Der exponentielle Anstieg in der Menge und dem Zugang zu Computertomografiedaten (CT-Daten) hat es Morpholog:
innen ermdglicht, Zahne mit hoherer Auflosung und auf gréfleren makroevolutiondren Skalen zu erforschen. Zahnfunktion
zu messen ist keine leichte Aufgabe, viele unserer mechanischen Erkenntnisse haben wir von der Zahnform. Kategorische
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Beschreibung von Zahnform wie morphologische Homo- und Heterodontie iibersehen funktionelle Nuancen, in-
dem sie Zahndiversitat fiir vergleichende Analysen reduzieren. Die Methode der funktionellen Homodontie erfasst
quantitativ die funktionelle Diversitét ganzer Gebisse mittels der Zahnform. Diese Methode verwendet Zahnober-
fliche und Position, um die Leitung von Stress zu berechnen und schétzt einen Schwellenwert fiir funktionell ho-
modonte Zahne durch Bootstrapping und Clustering-Techniken ab. Allerdings haben einige Vertebraten hunderte
oder tausende Zihne und das Messen von Form und Funktion jedes einzelnen Zahns kann mithsam sein. Wir
prasentieren hier Dental Dynamics, ein Modul fiir 3D Slicer, welches eine schnelle und prizise Quantifizierung
von Gebissen und Kiefern ermoglicht. Das Modul automatisiert die Berechnung von mehreren klassischerweise
fiir die Beschreibung von Zahnform und -funktion verwendeten Merkmalen (z.B. aspect ratio, mechanical advan-
tage, force etc.). Um den Nutzen unseres Moduls zu demonstrieren, haben wir Dental Dynamics verwendet, um 780
Zihne von 20 Salamandern mit diverser Okologie zu quantifizieren. Wir haben diese Daten mit der funktionellen
Homodontie gepaart, um die Hypothese zu erforschen, dass arboreale Aneides-Salamander neuartige Zahnfunk-
tion haben. Dental Dynamics bietet eine neue, schnelle Art, Zdhne zu messen und erh6ht die Zuganglichkeit der
funktionellen Homodontie-Methode. Wir hoften, dass Dental Dynamics weitere theoretische und methodologische
Entwicklungen fiir die Quantifikation und das Studium von Z&hnen inspiriert.
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Dental dynamics: A new tool for quantifying tooth and jaw biomechanics 3

Introduction

Show me your teeth and I will tell you who you are
(Cuvier et al. 1812; Rudwick 2008). Anatomists have
long been enamored by our ability to identify species,
infer tooth function, and diet from dental shapes and
organization of dentitions (Summers 2000; Whitenack
2008; Ungar 2010; Crofts and Summers 2014; Conway
et al. 2015; D’Amore 2015; Corn et al. 2016; Huie et al.
2019; Kolmann et al. 2019, 2021; Cohen, Weller, and
Summers 2020; Heiple et al. 2023; Segall et al. 2023).
The enamel composition of teeth makes them pre-
disposed to fossilize, creating a record of their shape
and function across space and time (Dean 1987, 2000).
In fact, the seafloor is littered with teeth and odon-
todes of extant and extinct species allowing us to re-
construct the composition of food webs and ecosys-
tems that existed millions of years ago (Sibert et al.
2014; Sibert and Norris 2015). The deciduous teeth
of many vertebrates bear the lasting scars of func-
tion as their wear and tear reveal damage (Ungar
and Williamson 2000; Carr et al. 2006; Christiansen
et al. 2010; Ungar et al. 2010; Collins and Underwood
2021; Huysseune and Witten 2023), and the organiza-
tional structure of hydroxyapatite crystals reflect me-
chanical stress during prey loading (Enax et al. 2014;
Marcus et al. 2017; Werth et al. 2019; Delaunois et al.
2020; Deng et al. 2022). Teeth from today, yesterday,
or 400 million years ago provide answers to the ques-
tions of what animals eat and how they interact with
each other. And while tooth morphology has resulted
in endless interpretations of diet, phylogeny, and usage;
quantifying tooth function remains a challenge.
Shape-based predictions of tooth function alone
offer limited insights into the diversity of dentitions
(D’Amore 2015; Mihalitsis and Bellwood 2019; Cohen,
Weller, and Summers 2020, Cohen, Weller, Westneat
et al. 2020; Huie et al. 2020; Hulsey et al. 2020; Ryerson
and Van Valkenburg 2021). Homodonty is a classic
anatomical descriptor of tooth shape where all teeth in
the dental battery are of the same shape or size, such asa
series of conical teeth in most bony fish (Simpson 1936;
Keene 1991; Ungar 2010). Heterodonty is reserved for
clearly regionalized morphology, which describes a
typical mammalian jaw with incisors, canines, premo-
lars, and molars which have been frequently shown
to have distinct biomechanical capabilities. Molars
are well known for their ability to crush and fracture
prey, while canines pierce through flesh. Now, imag-
ine a dental battery lined with only canines—do the
posterior canines still puncture or do they take on
a new crushing behavior? There are no strict rules
for tooth shape and function; rather, they exist on a
continuum. However, qualitative classifications like
morphological homodont, macrodont, or edentulate

fail to encompass the full range of functional variation
by simplifying dentitions for comparative analyses
(Mihalitsis and Bellwood 2019; Cohen, Weller, and
Summers 2020, Cohen, Weller, Westneat et al. 2020).
It is easy to overlook the functional diversity hidden
in a battery of conical teeth. Under a morphological
homodonty classification, the many conical teeth on
a piscivorous lingcod jaw are all perceived to be for
stabbing. In reality, these fish have coordinating patches
of large and small teeth generate functional region-
alization comparable to mammals (Cohen, Weller,
and Summers 2020; Carr et al. 2021). We have many
powerful tools for quantifying tooth shapes (Robinson
et al. 2002; Anderson and LaBarbera 2008; Whitenack
and Motta 2010; Bunn et al. 2011; Santana et al. 2011;
Pampush et al. 2016; Anderson et al. 2019; Crofts et al.
2020), however, to directly measure dental function,
we need to look beyond the morphology of isolated
teeth and instead consider the biomechanics of the
entire jaw.

The functional homodonty method quantitatively
assesses the functional diversity of dentitions by calcu-
lating the stress each tooth can transmit to prey based
on its surface area and position along the jaw (Cohen,
Weller, and Summers 2020, Cohen, Weller, Westneat
et al. 2020). Variation in stresses reveal a functional
homodont-heterodont continuum that can be studied
across species and analyzed in an evolutionary frame-
work. The functional homodonty method enables us
to describe the functional diversity of whole dentitions,
how tooth clusters work in tandem, and isolate func-
tionally unique teeth on a jaw. For example, Halichoeres
wrasses are abundant reef fish with dentitions of small
conical teeth in very similar arrangements (Cohen,
Weller, Westneat, et al. 2020). From a morphological
perspective, there should be little functional variation
in how these teeth interact with prey and yet, functional
heterodonty has evolved at least three times. Some fish
have dentitions like the lingcod where large and small
teeth work together in transmitting forces. Others have
one particular tooth—a large central canine—that ex-
erts stresses 12 times greater than any other tooth on
the jaw. Each instance of functional heterodonty reveals
nuances in how this group of wrasses interact with their
prey (Cohen, Weller, Westneat et al. 2020).

One of the major barriers to studying teeth is reso-
lution. Large animals are convenient because they have
large teeth, but smaller animals are more difficult to
study with conventional imaging techniques. Micro-
computed tomography (micro-CT) scanning has
become a popular and highly effective method for
conducting morphological investigations on dental
batteries (Kolmann et al. 2018, 2019; Buser et al. 2020;
Williams et al. 2022; Segall et al. 2023). It produces
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high-resolution, three-dimensional data that can be
digitally dissected without damaging the physical
specimens. The advantages extend to fossils that may
be embedded in a matrix and would otherwise be
difficult to examine (Wu and Schepartz 2009; Abel
et al. 2012; O’Hara et al. 2019). Furthermore, the
availability of computed tomography (CT) data; both
in terms of taxonomic diversity and accessibility, has
grown exponentially in the last two decades. Ini-
tiatives like MorphoSource, The Open Vertebrate
Project (OVERT), or #ScanAllFishes provide access
to thousands of vertebrate scans (Boyer et al. 2016;
Davies et al. 2017; Rolfe et al. 2021). However, ac-
cessibility is a double-edged sword. Some vertebrates
have hundreds of teeth, and our ability to study
whole dental batteries on macroevolutionary scales is
hindered by processing time and technology. Thus,
we are in dire need of new software that can aid
in the rapid collection of morphological data from
CT scans.

A promising platform for rapid CT data quantifica-
tion is the open-source image computing software 3D
Slicer, which has been designed to visualize and an-
alyze 2D, 3D, and 4D data (Kikinis et al. 2014; Rolfe
etal. 2021). It is available across operating systems, and
comes equipped with a powerful suite of tools for man-
ual and semi-automatic segmentation, measuring and
manipulating 3D data, and data visualization. Func-
tions that are not provided by the core environment can
be developed by external users and uploaded to the ap-
plication’s native extension manager. Recently, 3D Slicer
has gained a lot of traction among organismal biolo-
gists and morphologists due to the development of re-
cent tutorials, tools, and extensions (SlicerMorph, Seg-
mentGeometry, MEMOS, etc.) (Buser et al. 2020; Rolfe
etal. 2021; Huie etal. 2022; Rolfe et al. 2023). These have
helped make 3D Slicer a one-stop-shop for processing
and reusing CT data.

Here, we present Dental Dynamics, a new mod-
ule for 3D Slicer designed to model tooth function in
vertebrate jaws (Fig. 1). Below, we describe the util-
ity of Dental Dynamics and how it automates the cal-
culation of several key jaw and tooth traits that can
be directly exported for the calculation of functional
homodonty and other analyses of jaw biomechanics.
To demonstrate the efficacy of Dental Dynamics, we
present a use case on the evolution of tooth function
in plethodontid salamanders. Our module is capable
of quantifying dozens of teeth in seconds allowing for
the efficient collection of highly valuable morphological
data.

K. E. Cohen et al.

DATA QUANTIFICATION

1. Obtain CT scan data

2ORPHg

3. Calculate tooth stress
(@

Dental Dynan“vycéﬂ

DATA ANALYSIS

Functional homodonty method

Residual stress
i
i

Relative jaw position (%)

Modified from Cohen et al., 2020

Fig. | Workflow for the quantification of tooth and jaw biomechan-
ics in 3D Slicer. (1) Obtain CT scan data from an open-source repos-
itory. (2) Segment the jaws and teeth in 3D Slicer using native seg-
mentation tools. (3) Use the new 3D slicer module Dental Dynamics
to calculate the jaw and tooth traits (i.e., aspect ratio, output force,
tooth stress, etc.). One of the ways to analyze results from Dental Dy-
namics is to use the functional homodonty method (Cohen, Weller,
and Summers 2020; Cohen, Weller, Westneat et al. 2020) to assess
the functional variation of whole dentitions.
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Dental dynamics: A new tool for quantifying tooth and jaw biomechanics 5
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Fig. 2 The Dental Dynamics graphical user interface in 3D Slicer. The module enables the user to enter specimen metadata, define anatomical
landmarks on the jaw, edit modeling parameters, and calculate several jaw and tooth traits. Shown is the skull of Aneides lugubris with the lower
jaw and individual teeth segmented out. The red lines (upper set of lines) from the jaw joint to the tips of the teeth represent the out levers
used to calculate mechanical advantage. The length of the blue lines (lower set of lines) connecting the jaw joint to the bases of the teeth
represent the position of each tooth along the jaw. An example results table is shown, which can be saved and imported into statistical analysis

software.

Dental Dynamics for 3D Slicer

Dental Dynamics is a Python-based module for 3D
Slicer designed to run on the current stable release of
the program (version 5.6.1, r32438). The module
is included in the new SlicerBiomech extension,
which also contains the pre-existing SegmentGeometry
module (formerly in the SegmentGeoemtry extension)
for calculating second moment of area and other cross-
sectional traits (Huie et al. 2022). The official method
of obtaining Dental Dynamics is by downloading and
installing the SlicerBiomech extension through Slicer’s
built-in extension manager. Detailed documentation
about Dental Dynamics, step-by-step instructions
on how to install and use Dental Dynamics, and the
source code are all provided on a GitHub repository
(https://github.com/jmhuie/SlicerBiomech).

Functionality

Dental Dynamics is designed to calculate several jaw
and tooth traits using a 3D Slicer segmentation file con-
taining individually segmented teeth and user-defined

anatomical landmarks (jaw joint, tip of the jaw, and the
insertion and origin site of up to three jaw closing mus-
cles). These inputs are used to automatically calculate
jaw length and muscle in-levers, and for each tooth its
position along the jaw, height, width, aspect ratio, sur-
face area, mechanical advantage, output force, and tooth
stress. Dental Dynamics can also take additional user in-
puts to estimate muscle parameters such as input force
and insertion angle to provide more informed estimates
of bite force. The module is equipped with a graphi-
cal user interface that enables the editing of specimen
metadata, selecting the necessary input files and points,
and adjusting the additional muscle parameters. Once
results have been computed, they are presented in a
table that can be readily imported into other statisti-
cal software (Fig. 2). Although the intended use cases
involve computing on CT segmentations made in 3D
Slicer, segmentations and meshes (.obj, .ply, .stl) pro-
duced by other software can be easily converted into a
usable format with native 3D Slicer functionalities.
The stress that a tooth can transmit to prey is calcu-
lated by taking the force a tooth can exert and dividing
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(A) Morphological homodonty

(B) Jaw lever mechanics

Tooth Output Force (F__,)

F, *sin(@ * L, /L,,

tooth —

O, = Fioor, / Surface Area

K. E. Cohen et al.

(C) Functional homodonty hypothesis : same tooth stress

H1: Regionalized patches of stress. o1 = Red teeth at tip, 02
= grey teeth in middle, 03 = white tooth at back

H2: Stresses change as a function of position. Higher stress
at the tip (red tooth) and lower stresses at the back (white
tooth

Fig. 3 Functional vs. morphological homodonty. (A) Morphological homodonty represents a morphology where all teeth are the same shape
or size along the jaw. (B) Tooth function is modeled using simple lever mechanics to estimate how much force and stress a tooth can exert
based on its surface area and position on the jaw. (C) Functional homodonty is represented by all teeth bearing the same stress. All teeth
are colored purple indicating they may have similar stress values. (D) Functional heterodonty exists on a continuum and represents significant
variations in stress along the jaw. Two functional heterodonty hypotheses are represented here. The first condition demonstrates functional
regionalization. All gray teeth have similar stress values that differ from the red teeth at the tip and white teeth at the back. The second
condition represents a gradient of stresses that match our prediction based on jaw lever mechanics with teeth at the front bearing lesser stress

values than those at the back.

it by the surface area of the tooth

_ E tooth
SAtooth

Assuming the tooth resembles a cone, the surface
area of the tooth can be approximated using the height
and radius of the tooth. However, teeth are rarely perfect
cones. They are often curved, asymmetrical, or devi-
ate from the conical shape altogether. Dental Dynamics
calculates the surface area of a tooth with any geomet-
ric shape more accurately by using the native 3D Slicer
surface area calculator in the Segment Statistics module
(Kikinis et al. 2014). Because tooth aspect ratio can still
provide relevant information separate from surface area
and stress, Dental Dynamics will still measure the height
and width of each tooth.

Jaws are often modeled as simple lever systems
(Westneat 2003, 2004) and the forces that teeth can ex-
ert depend on their position along the jaw. The force

exerted by a given tooth on the jaw can be calculated as

F E in (o) in lever
=F, *sin(a)« | ——— ),
tooth out lever

where Fj, is the input force of a jaw closing muscle, a is
the angle of insertion for that muscle in degrees, in lever
is the distance from the jaw joint to the muscle insertion
site, and out lever is the distance between the jaw joint
and the tip of the tooth (Fig. 3). By default, Dental Dy-
namics will assume a static bite force of 1 N and muscle
insertion angle of 90°, causing tooth force estimates to
reflect variation in mechanical advantage (in lever/out
lever). However, the input force and angle of insertion
of each closing muscle can be manipulated with the user
interface to perform simulations under different condi-
tions. When multiple closing muscles are used to cal-
culate output force, the F,,,y, calculated for each muscle
are summed together to achieve a total force used to cal-
culate tooth stress.
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Dental dynamics: A new tool for quantifying tooth and jaw biomechanics 7

If the anatomy of the jaw closing muscles are known,
either through dissection or CT scans with contrast
stain, users can calculate more biologically informed
muscle parameters and output values. The user inter-
face allows for the landmarking of the origin of each
closing muscle that can be used to help measure the an-
gle of insertion. Muscle input force can be estimated
by calculating the physiological cross-sectional area
and multiplying it by maximal isometric stress (Fiax)
(Martin et al. 2020). Using user-provided estimates of
muscle volume, input force can be calculated as

volume * cos («)
fiber length

in R max»

where o is the pennation angle of the muscle fibers in
degrees. Dental Dynamics uses the distance between a
muscle’s origin and insertion as a proxy for fiber length,
and by defaults, assumes a pennation angle of 0°. The
maximal isometric stress for vertebrate muscles can
vary based on taxon and region of the body (Westneat
2003; Martin et al. 2020). However, Dental Dynamics as-
sumes a default F,,,x value of 0.2 N/mm? to calculate in-
put force, like MandibLever (Westneat 2003). Both the
pennation angle and the F,x values can be modified
and defined by the user. Dental Dynamics uses the pro-
vided jaw metadata and anatomical landmarks to au-
tomatically determine where the tip and base of each
tooth is. First, Dental Dynamics identifies the principal
axis that runs along the length of a tooth and crosses
the centroid. Two landmarks are placed on the princi-
pal axis at either ends of the tooth. The landmark closer
to a given point along a vector defined by the jaw tip and
jaw joint is assumed to be closer to the base of the tooth.
To find the center of the base, the base landmark is slid
along the principal axis until it contacts the tooth. The
tip landmark is raised above the tooth and then snapped
to the nearest point on the surface, which should be the
tip of the tooth. The positions of these landmarks are
determined for each tooth, used in the calculations, and
saved into their own point lists. After initially comput-
ing results, users can manually adjust the position of the
points and recompute the results. In instances where
Dental Dynamics may incorrectly identify the tip and
base of some or all teeth, the user interface is equipped
with tools to flip the landmark positions for all teeth or
just selected ones. Additional quality control tools are
provided such as the ability to toggle on and off the dis-
play of tooth labels and lines connecting the jaw joint to
the tooth tips and bases.

Limitations

Dental Dynamics is a useful tool for automating many
calculations performed on teeth but has some caveats
that are worth considering. Our module is optimized

for calculating stress from teeth with a singular point
(i.e., cones). For the module to work on multi-cuspid
dentition, a single consensus point must be chosen
to calculate mechanical advantage and tooth stress.
That reflects a limitation in our models for estimating
tooth stress and jaw leverage, but with more user in-
put a solution on handling multi-cuspid dentition may
be devised. Currently, Dental Dynamics is limited to
modeling static bites forces and does not take factors
such as jaw angle and speed of jaw closure into ac-
count. The module also assumes that there are no lat-
eral or antero-posterior displacements during a bite,
a common phenomenon during mastication. Further
development of the module could consist of provid-
ing support for modeling tooth stress under more dy-
namic conditions. Lastly, Dental Dynamics requires the
teeth to be pre-segmented, a time-consuming process
that exists independently from the module. The recent
and rapid development of AI and auto-segmentation
tools will likely provide a solution in the near
future.

Case study: Evolution of heterodonty in
plethodontid salamanders

Tooth function of plethodontid salamanders

Habitat influences an animal’s diet and feeding strat-
egy by limiting prey availability or imposing physi-
cal constraints (Diehl 1993; Collar and Wainwright
2009). Thus, habitat transitions may be accompanied
by changes in tooth morphology. Salamanders oc-
cupy a wide range of environments that span the
aquatic-terrestrial gradient, and a number of terres-
trial microhabitats (i.e., fossorial, arboreal, and saxi-
colous). Salamanders also exhibit a range of diverse
tooth shapes, numbers, and positions (Caldwell and
Trauth 1979; Beneski and Larsen 1989; Gregory et al.
2016). To capture prey, aquatic salamanders typically
rely on suction feeding, but on land many species
use a combination of biting and, to varying extents,
high-power tongue projection to pull prey into their
mouths (Deban and Wake 2000; Deban et al. 2020).
Salamander tooth shape is somewhat correlated with
dietary specialization (Gregory et al. 2016), but how
they feed may be an equally important determinant of
shape.

Lungless salamanders (Plethodontidae) have repeat-
edly invaded arboreal niches (McEntire 2016; Baken
and Adams 2019). Most arboreal salamanders have
radiated in the tropics, but the temperate genus of
Aneides salamanders has successfully invaded the ar-
boreal niche, with one species found as high as 88
m above the ground (Spickler et al. 2006; McEntire
2016). Aneides salamanders have been characterized
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as having highly modified dentitions, with fewer and
larger teeth compared with other closely-related species
(Wake 1963). However, these morphological changes
do not appear to be associated with changes in diet. In-
stead, it has been proposed that the modified dentitions
may yield functional adaptations that aid arboreal Anei-
des in securing and manipulating prey more efficiently
(Wake 1963; Larson et al. 1981). When feeding, many
terrestrial salamanders will swing their heads back
and forth after securing and manipulating their prey
(Lindquist and Bachmann 1980; Lukanov et al. 2016;
pers. obs.). However, performing such violent behaviors
on an elevated surface increases the risk of falling. Thus,
it may be that the enlarged teeth help Aneides to grasp
and bite through the tough exoskeleton of arthropods
without the need for head shaking (Bury and Martin
1973; Lynch 1985).

The diversity of salamander teeth has not been stud-
ied in a quantitative framework. Here, we employ Den-
tal Dynamics and the functional homodonty method to
assess the functional diversity of teeth in plethodontid
jaws. We set out to evaluate whether the morphological
changes in Aneides teeth are accompanied by functional
shifts, and whether those shifts also occur in other ar-
boreal salamander lineages.

Methods

We downloaded micro-CT data for 20 species from
8 genera of plethodontid salamanders from Mor-
phoSource (https://www.morphosource.org/) that vary
in their microhabitats (Table 1). We segmented the
lower jaws of each individual in 3D Slicer, and de-
ployed the scissor and island tools to quickly isolate the
teeth and separate them into individual segments. We
then used Dental Dynamics to estimate tooth stresses.
Following the provided protocol on GitHub (https://
github.com/redacted), we entered the specimen meta-
data and defined three anatomical landmarks on the
jaw. Salamander adductor muscles vary in their relative
size and the exact location and area of their insertion
sites (Hinderstein 1971; Carroll and Holmes 1980). We
did not have adequate information about the muscle
anatomy for our sampled salamander species, thus we
modeled a simple bite force with a single insertion point
on the most dorsal point of the coronoid process, an eas-
ily identifiable landmark across species in our study. Jaw
and tooth traits were calculated from the left and right
sides of the jaw separately for each species. Replacement
and highly damaged teeth were ignored, and traits were
not calculated.

The outputs from Dental Dynamics were exported
and collated into a single spreadsheet and analyzed with
the functional homodonty method using publicly avail-

K. E. Cohen et al.

able R code (https://github.com/hiweller/homodonty_
code) adapted to our dataset. The functional homod-
onty method is described in detail in Cohen et al.
(2020, 2020), but is outlined briefly here. First, tooth
stresses were normalized by the median stress of each
jaw to calculate residuals. To determine a threshold
for significant variations in residual stress, a bootstrap-
ping analysis was performed per Cohen, Weller, and
Summers (2020). In short, half of the teeth from a den-
tition were randomly subsampled without replacement
and normalized by the subsampled median stress. This
procedure was repeated 10,000 times for each dentition
to generate a null distribution of residual stress values.
A k-medoids clustering analysis (with n = 2 clusters)
was performed on a random subsample of 5000 resid-
uals 100 times, defining the threshold as the mean of
the two resulting cluster centers. Teeth that have resid-
ual stresses within the threshold were considered func-
tional homodonts, while those outside of the threshold
were functional heterodonts. Dentitions were consid-
ered functionally homodont if all their teeth fall within
that threshold and exert similar (ideally the same) stress
values.

We then generated two metrics from the residual
stress values that emphasize specific aspects of the den-
tition (Cohen, Weller, Westneat et al. 2020). The aver-
age squared residual stress captures the degree of func-
tional divergence among teeth from the same battery.
Meanwhile, the proportion of functionally heterodont
teeth provides insight on whether a battery contains a
few unique teeth or several that may imply regionaliza-
tion. We visualized these continuous traits on a pruned
time-calibrated phylogeny (Jetz and Pyron 2018) using
the “contMap” function from the phytools package in R
(Revell 2012).

Results
Performance of Dental Dynamics

We used Dental Dynamics to calculate traits for 780
teeth distributed across the left and right lower jaws
of 20 different specimens. Computation times were
strongly correlated with the number of teeth on each
side of the jaw. The time to compute all metrics for a
single tooth averaged roughly 0.45 s. On average, the
salamanders had roughly 20 teeth on each side of the
jaw and Dental Dynamics had an average output speed
of 8.16 s per side. The number of teeth on a single side of
a jaw ranged from 4 to 44, and computing times ranged
between 1.45 and 22.18 s, respectively (Table 2). Com-
putation times were recorded and averaged using two
computers: a Dell XPS 8950 equipped with a 16-core
12th Gen Intel i9-12900 2.4 GHz processor, a NVIDIA
GeForce RTX 3070 GPU, and 64 GB of memory; and a
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Table 2 Average tooth counts and computation time data for the 3D
Slicer module Dental Dynamics.

Average Average
number computation

Species of teeth time (s)
Aneides aeneus 6 2.6
Aneides flavipunctatus 4 1.8
Aneides hardii 8.5 3.2
Aneides lugubris 10.5 3.8
Aneides vagrans 7 2.9
Bolitoglossa lincolni 21.5 12.8
Bolitoglossa mexicana 23.5 9.8
Chiropterotriton chiropterus 10.5 4.9
Chiropterotriton multidentatus 25.5 1.3
Chiropterotriton priscus 18.5 8.1
Desmognathus aureatus 43 20.1
Desmognathus monticola 235 8.8
Desmognathus wrighti 14.5 6.3
Eurycea multiplicata 18 79
Hydromantes samweli 39 17.1
Plethodon caddoensis 39 17.7
Plethodon punctatus 33 13.3
Plethodon vehiculum 19 7.9
Thorius minutissimus 14 5.8
Thorius tlaxiacus .5 53

16-inch 2021 MacBook Pro equipped with an Apple M1
Max chip that has a 10-core CPU, an integrated 32-core
GPU, and 64 GB of memory. Computation times were
very similar between the two computers, but computa-
tions times are expected to vary across machines based
on the speed on the processor because computations are
performed using the CPU.

Functional heterodonty in plethodontid
salamanders

Plethodontid teeth are mostly conical and vary lit-
tle in shape or size within an individual and between
species. This is true except for Aneides salamanders
whose teeth range from small cones to large, recurved
fangs to flat blade-like teeth (Fig. 4). The number of
teeth and their distribution along the jaw vary sub-
stantially across the sampled plethodontid salaman-
ders (Supplementary Table S1). For example, Aneides
flavipunctatus (Fig. 4) has only four teeth on its lower
left jaw and they are all located at the anterior mar-
gin. Meanwhile, Desmognathus aureatus (Fig. 4) has 42
teeth on its lower left jaw that are distributed evenly
across the full length of the dentary. Plethodon caddoen-
sis (Fig. 4) also has 44 teeth on its right jaw across the
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dentary but are more densely packed anteriorly. In gen-
eral, we observed that teeth located posteriorly on the
jaw had higher stress values than those located anteri-
orly (Fig. 5A, Supplementary Table S1). This is an ex-
pected result given that the muscle out-lever is shorter
and mechanical advantage is higher in the posterior re-
gion of the jaw (Westneat 2003).

Of the 20 plethodontid salamanders sampled, all
but one individual (A. flavipunctatus), have at least
one functionally heterodont tooth (Fig. 5, Fig. 6,
Supplementary Table S1). We observed two strategies
for evolving a functionally heterodont dentition among
our samples. The arboreal A. aeneus achieves func-
tional heterodonty through a relatively high proportion
of functionally heterodont teeth (~30%) but a low av-
erage squared residual (Figs. 5C and 6). The teeth of
A. aeneus show strong functional regionalization with
an anterior patch of small functionally heterodont teeth
and a more posterior patch of large, functional homod-
onts (Figs. 5C and 6). Initially, these teeth appear to
play a role in capturing large and elusive prey. However,
A. aeneus primarily feeds on small insects (i.e., bee-
tles, mosquitos, and ants) (Lee and Norden 1973) and
uses its protrusible tongue to bring prey directly into
its mouth, relying little on their large canines (Deban
et al. 2020; pers. obs.). When not in trees, A. aeneus oc-
cupy rock crevices and both males and females will snap
at and act aggressively towards intruders (Cupp 1980;
Waldron and Humphries 2005). Thus, the tooth mor-
phology and function of A. aeneus may stray from the
ideal shapes for feeding, and instead reflect the selec-
tive pressures of intraspecific combat and territorial dis-
putes. The role of prey retention and processing may be
shunted to the vomerine and palatine teeth.

In contrast, the terrestrial pygmy salamander,
Desmognathus wrighti, has a dentition with a high
average squared residual and a high proportion of
functionally heterodont teeth (Figs. 5D and 6). Some
of its teeth have stresses up to 8x the average residual
stress, which are all located in the back of the jaw,
while its other heterodont teeth are below the threshold
and in the front of the jaw. Where the oral dentition
of A. aeneus may have a minimal role in foraging,
the oral teeth of D. wrighti are likely involved in prey
capture and processing. Similar pygmy Desmognathus
species, and presumably D. wrighti, feed on small
arthropods (mites and springtails) that are shielded
in a hard chitin exoskeleton (Bruce 2019). The pres-
ence of exceptionally high-stress, posteriorly placed
teeth in the dentition of D. wrighti could indicate an
adaptation towards durophagy. Biting, chewing, or
eating hard prey requires teeth able to handle large
and variable stresses. Additionally, Desmognathus
salamanders have a suite of muscular modifications
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Fig. 4 Diversity of plethodontid skulls and teeth across 20 sampled species. Scale set to | mm.

that greatly increase their maximum bite forces com-
pared with most other plethodontids (Deban and
Richardson 2017).

We show that even within primarily conical den-
titions, there are several strategies of achieving func-
tional heterodonty, each with its own advantage (Fig. 6).
Our data do not support the hypothesis that the
morphological changes in Aneides tooth shapes are ac-
companied by functional shifts, nor are there similar-
ities among different arboreal lineages (Fig. 5A, B). It
may be that the metrics we used to evaluate denti-
tions do not fully capture the nuances in the function
of Aneides jaws. However, by examining variation in
tooth stress we were still able to detect some outlying
dentitions (A. aeneus and D. wrighti) that have plau-
sible ties to ecology. Incorporating musculature data
into the Dental Dynamics analysis will continue to pro-
vide a clearer picture about the functional capabilities
of the jaws and enable more accurate comparisons of

bite force and tooth stress. For example, Aneides sala-
manders vary in their degrees of sexual dimorphism
(i.e., jaw muscle size and tooth count) and the extent
to which they display aggressive behaviors (Wake 1963;
Wake et al. 1983, Staub 1993, 2021). Comparing the
tooth function of male and female salamanders may
help to better explain the evolution of the novel denti-
tions found in Aneides salamanders. Broadly speaking,
future work should take a more nuanced approach to
study how the evolution of salamander dental morphol-
ogy is correlated with both feeding and non-feeding
behaviors.

Conclusions

Dental Dynamics represents a significant advancement
in our ability to quantify and analyze teeth and jaws
in 3D. Most vertebrates have teeth, and the vast
array of available 3D data sets opens exciting
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with high stress values in the posterior tooth bearing region of the jaw.

opportunities for reusing CT data in the field of
dental morphology. One key advantage of this ap-
proach is its ability to quickly quantify morphology,
even in the case of small and intricate teeth. Dental
Dynamics not only simplifies the process of obtaining
numerical data but also increases our ability to address
large-scale questions related to dental evolution. We
demonstrate the power of Dental Dynamics to facilitate
the functional homodonty method, but its application
does not stop there. The output variables of Dental
Dynamics can be adapted to support the calculation of
other metrics or used in tandem with other techniques.
For example, methods relating aspect ratio of conical
teeth to the energy of puncture may benefit from tools
like Dental Dynamics that can calculate aspect ratio
for many teeth at a time (Zhang and Anderson 2022,
2023). Tools like MandibLever (Westneat 2003) can
dynamically model the bite and jaw mechanics more
comprehensively than Dental Dynamics but do not
consider the dentitions. Alternatively, methods such
as OPCR or finite element analysis (Evans et al. 2007;
Berthaume 2016; Spradley et al. 2017) that focus on

characterizing teeth with complex shapes could be used
to inform how to make Dental Dynamics more useful
for modeling the stress of non-conical teeth. That is the
beauty of open-source software. Dental Dynamics can
be continually improved upon to meet the demands of
growing needs beyond the scope of its original design.
Teeth have been telling the stories of vertebrates for
millions of years, our ability to quantify these changes
in development, shape, and evolution is paramount.
The utility of Dental Dynamics extends beyond CT
scans and can be used to analyze 3D surface scans,
photogrammetry models, or even pre-segmented mod-
els exported from other CT processing software. With
the suite of native tools in 3D Slicer, segmenting
individual teeth is streamlined and many data modal-
ities may be used with Dental Dynamics. The publiciza-
tion of Slicer extensions and modules such as Slicer-
Morph, Dental Dynamics, and SegmentGeometry should
inspire other morphologists and biomechanists to de-
rive their own open-source modules or expand upon
existing ones. These extensive tools kits will in turn ex-
pand the amount of information we can gather from a
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